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Abstract— We give a simple, explicit example of a two-
dimensional polynomial vector field that is globally asymptoti-
cally stable but does not admit a polynomial Lyapunov function.

I. INTRODUCTION AND MAIN RESULT

Given a particular class of differential equations, a ques-
tion of fundamental importance in stability analysis is to
determine a class of Lyapunov functions whose existence is
necessary and sufficient for proving stability. Arguably, the
class of polynomial differential equations are among the most
widely encountered in engineering and sciences. For these
systems, it is most common (and most natural) to search
for Lyapunov functions that are polynomials themselves.
This approach has become further prevalent over the past
decade due to the fact that techniques from sum of squares
optimization [1] have provided for algorithms that given a
polynomial system can efficiently search for a polynomial
Lyapunov function ( [1], [2]).

The question therefore naturally arises as to whether the
existence of polynomial Lyapunov functions is necessary
for stability of polynomial systems. Since polynomials can
approximate smooth functions with arbitrary accuracy on
compact regions, one can expect the answer to this question
to be positive if certain notions of stability such as exponen-
tial stability on compact sets are of interest [3]. On the other
hand, to the best of our knowledge, the question of whether
globally asymptotically stable (GAS) polynomial systems
admit polynomial Lyapunov functions has been open. In fact,
a recent reference in the controls literature ends with the
following statement [4], [5]:

“Still unresolved is the fundamental question of whether
globally stable vector fields will also admit sum-of-
squares Lyapunov functions.”

Of course, the fundamental question referred to here is
on existence of a polynomial Lyapunov function. If one
were to exist, then we could simply square it to get another
polynomial Lyapunov function that is a sum of squares. In
this paper, we settle the question by giving a remarkably
simple counterexample. In view of the fact that globally
asymptotically stable linear systems always admit quadratic
Lyapunov functions, it is quite interesting to observe that
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the following vector field that is arguably “the next simplest
system” to consider does not admit a polynomial Lyapunov
function of any degree.

Theorem 1.1: Consider the polynomial vector field

ẋ = −x+ xy
ẏ = −y. (1)

The origin is a globally asymptotically stable equilibrium
point, but the system does not admit a polynomial Lyapunov
function.

Proof: Let us first show that the system is GAS.
Consider the Lyapunov function

V (x, y) = ln(1 + x2) + y2,

which clearly vanishes at the origin, is strictly positive for
all (x, y) 6= (0, 0), and is radially unbounded. The derivative
of V (x, y) along the trajectories of (1) is given by

V̇ (x, y) = ∂V
∂x ẋ+ ∂V

∂y ẏ

= 2x2(y−1)
1+x2 − 2y2

= −x
2+2y2+x2y2+(x−xy)2

1+x2 ,

which is obviously strictly negative for all (x, y) 6= (0, 0). In
view of classical Lyapunov stability theorems (see e.g. [6, p.
124]), this shows that the origin is globally asymptotically
stable.

Let us now prove that no positive definite polynomial
Lyapunov function (of any degree) can decrease along the
trajectories of system (1). The proof will be based on simply
considering the value of a candidate Lyapunov function at
two specific points. We will look at trajectories on the non-
negative orthant, with initial conditions on the line (k, αk)
for some constant α > 0, and then observe the location of
the crossing of the trajectory with the horizontal line y = α.
We will argue that by taking k large enough, the trajectory
will have to travel “too far east” (see Figure 1) and this will
make it impossible for any polynomial Lyapunov function to
decrease.

To do this formally, we start by noting that we can
explicitly solve for the solution (x(t), y(t)) of the vector
field in (1) starting from any initial condition (x(0), y(0)):

x(t) = x(0)e[y(0)−y(0)e
−t−t]

y(t) = y(0)e−t.
(2)

Consider initial conditions

(x(0), y(0)) = (k, αk)
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Fig. 1. Typical trajectories of the vector field in (1) starting from initial
conditions in the nonnegative orthant.

parameterized by k > 1 and for some fixed constant α > 0.
From the explicit solution in (2) we have that the time t∗ it
takes for the trajectory to cross the line y = α is

t∗ = ln(k),

and that the location of this crossing is given by

(x(t∗), y(t∗)) = (eα(k−1), α).

Consider now any candidate nonnegative polynomial func-
tion V (x, y) that depends on both x and y (as any Lyapunov
function should). Since k > 1 (and thus, t∗ > 0), for
V (x, y) to be a valid Lyapunov function, it must satisfy
V (x(t∗), y(t∗)) < V (x(0), y(0)), i.e.,

V (eα(k−1), α) < V (k, αk).

However, this inequality cannot hold for k large enough,
since for a generic fixed α, the left hand side grows ex-
ponentially in k whereas the right hand side grows only
polynomially in k. The only subtlety arises from the fact
that V (eα(k−1), α) could potentially be a constant for some
particular choices of α. However, for any polynomial V (x, y)
with nontrivial dependence on y, this may happen for at most
finitely many values of α. Therefore, any generic choice of
α would make the argument work.

II. CONCLUSIONS

We showed that existence of a polynomial Lyapunov
function is not necessary for global asymptotic stability of a
polynomial vector field. It would be interesting to determine
whether globally exponentially stable (GES) systems admit
polynomial Lyapunov functions. Our counterexample is cer-
tainly not GES. Another related converse Lyapunov question
that is motivated by the use of computational techniques for
analysis via polynomial Lyapunov functions is the following:

Question: Suppose a polynomial vector field has a polyno-
mial Lyapunov function. Does this imply that sum of squares
optimization will succeed in finding a polynomial Lyapunov
function and proving stability?

Some results on this question are presented in recent
work [7] and [8].
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APPENDIX: EXAMPLE OF BACCIOTTI AND ROSIER

After our counterexample was submitted for publication,
Christian Ebenbauer brought to our attention an earlier
counterexample that appears in a book by Bacciotti and
Rosier [9, Prop. 5.2] and achieves the same goal (though
by using irrational coefficients). We explain the differences
between the two examples below.

The example in [9] is a vector field in 2 variables and
degree 5 that is GAS but has no polynomial (and no analytic)
Lyapunov function even around the origin. The construction
there is complementary to ours: while the cause of the
lack of existence of polynomial Lyapunov functions in our
Theorem 1.1 is fast growth arbitrarily far away from the
origin, the obstacle in their example is slow decay arbitrarily
close to the origin. As one would expect, the vector field
given in [9] is not locally exponentially stable. By contrast,
the linearization of the vector field in (1) is Hurwitz, so our
system is locally exponentially stable.

The example in [9] crucially relies on irrationality of
a parameter that appears as part of the coefficients of
the vector field. (Indeed, one easily observes that if that
parameter is rational, then the vector field does admit a
polynomial Lyapunov function.) In practical applications
where computational techniques for searching over Lyapunov
functions on finite precision machines are used, such issues
with irrationality of the input cannot occur. By contrast, the
example in (1) demonstrates that non-existence of polyno-
mial Lyapunov functions can happen for extremely simple
systems that may very well appear in applications.

As we remarked earlier, it is known that locally expo-
nentially stable polynomial vector fields admit polynomial
Lyapunov functions on compact sets [3]. The example in [9]
implies that the assumption of exponential stability indeed
cannot be dropped.
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